

 Navigation

 	
 index

 	
 next |

 	bcolz 1.1.2 documentation

Welcome to bcolz’s documentation!

Contents:

	Introduction
	bcolz at glance

	Installation
	Installing from PyPI repository

	Installing Windows binaries

	Using the Microsoft Python 2.7 Compiler

	Installing from tarball sources

	Testing the installation

	Tutorials
	Tutorial on carray objects

	Tutorial on ctable objects

	Writing bcolz extensions

	Library Reference
	First level variables

	Top level classes

	Top level functions

	Top level printing functions

	Utility functions

	The carray class

	The ctable class

	Optimization tips
	Changing explicitly the length of chunks

	Informing about the length of your carrays

	Lossy compression via the quantize filter

	Defaults for bcolz operation
	Defaults in contexts

	List of default values

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bcolz 1.1.2 documentation

Introduction

bcolz at glance

bcolz provides columnar, chunked data containers that can be
compressed either in-memory and on-disk. Column storage allows for
efficiently querying tables, as well as for cheap column addition and
removal. It is based on NumPy [http://www.numpy.org], and uses it
as the standard data container to communicate with bcolz objects, but
it also comes with support for import/export facilities to/from
HDF5/PyTables tables [http://www.pytables.org] and pandas
dataframes [http://pandas.pydata.org].

The building blocks of bcolz objects are the so-called chunks that
are bits of data compressed as a whole, but that can be (partially)
decompressed in order to improve the fetching of small parts of the
array. This chunked nature of the bcolz objects, together with a
buffered I/O, makes appends very cheap and fetches reasonably fast
(although the modification of values can be an expensive operation).

The compression/decompression process is carried out internally by
Blosc, a high-performance compressor that is optimized for binary
data. The fact that Blosc splits chunks internally in so-called
blocks means that only the interesting part of the chunk will
decompressed (typically in L1 or L2 caches). That ensures maximum
performance for I/O operation (either on-disk or in memory [https://github.com/FrancescAlted/DataContainersTutorials]).

bcolz can use numexpr or dask internally (numexpr is used by default
if installed, then dask and if these are not found, then the pure
Python interpreter) so as to accelerate many internal vector and query
operations (although it can use pure NumPy for doing so too). numexpr
can optimize memory (cache) usage and uses multithreading for doing
the computations, so it is blazing fast. This, in combination with
carray/ctable disk-based, compressed containers, can be used for
performing out-of-core computations efficiently, but most importantly
transparently.

carray and ctable objects

The main data container objects in the bcolz package are:

	carray: container for homogeneous & heterogeneous (row-wise) data

	ctable: container for heterogeneous (column-wise) data

carray is very similar to a NumPy ndarray in that it supports the
same types and basic data access interface. The main difference
between them is that a carray can keep data compressed (both
in-memory and on-disk), allowing to deal with larger datasets with the
same amount of memory/disk. And another important difference is the
chunked nature of the carray that allows data to be appended much
more efficiently.

On his hand, a ctable is also similar to a NumPy structured
array that shares the same properties with its carray brother,
namely, compression and chunking. Another difference is that data is
stored in a column-wise order (and not on a row-wise, like the
structured array), allowing for very cheap column handling. This
is of paramount importance when you need to add and remove columns in
wide (and possibly large) in-memory and on-disk tables –doing this
with regular structured arrays in NumPy is exceedingly slow.

Furthermore, columnar means that the tabular datasets are stored
column-wise order, and this turns out to offer better opportunities to
improve compression ratio. This is because data tends to expose more
similarity in elements that sit in the same column rather than those
in the same row, so compressors generally do a much better job when
data is aligned in such column-wise order.

bcolz main features

bcolz objects bring several advantages over plain NumPy objects:

	Data is compressed: they take less storage space.

	Efficient shrinks and appends: you can shrink or append more data
at the end of the objects very efficiently (i.e. copies of the
whole array are not needed).

	Persistence comes seamlessly integrated, so you can work with
on-disk arrays almost in the same way than with in-memory ones
(bar some special attention to flush data being required).

	ctable objects have the data arranged column-wise. This allows
for much better performance when working with big tables, as well
as for improving the compression ratio.

	Can leverage Numexpr and Dask as virtual machines for fast
operation with bcolz objects. Blosc ensures that the additional
overhead of handling compressed data natively is very low.

	Advanced query capabilities. The ability of a ctable object to
iterate over the rows whose fields fulfill some conditions (and
evaluated via numexpr, dask or pure python virtual machine) allows
to perform queries very efficiently.

bcolz limitations

bcolz does not currently come with good support in the next areas:

	Limited number of operations, at least when compared with NumPy.
The supported operations are basically vectorized ones (i.e. those
that are made element-by-element). But with is changing with the
adoption of additional kernels like Dask [https://github.com/dask/dask] (and more to come).

	Limited broadcast support. For example, NumPy lets you operate
seamlessly with arrays of different shape (as long as they are
compatible), but you cannot do that with bcolz. The only object
that can be broadcasted currently are scalars
(e.g. bcolz.eval("x+3")).

	Some methods (namely carray.where() and carray.wheretrue())
do not have support for multidimensional arrays.

	Multidimensional ctable objects are not supported. However, as
the columns of these objects can be fully multidimensional, this
is not regarded as an important limitation.

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bcolz 1.1.2 documentation

Installation

bcolz depends on NumPy and, optionally, Numexpr. Also, if you are
going to install from sources, and a C compiler (Clang, GCC and MSVC
2008 for Python 2, and MSVC 2010 for Python 3, have been tested).

Installing from PyPI repository

Do:

$ easy_install -U bcolz

or:

$ pip install -U bcolz

Installing Windows binaries

Unofficial Windows binaries are provided by Christoph Gohlke and can be
downloaded from:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#bcolz

Using the Microsoft Python 2.7 Compiler

As of Sept 2014 Microsoft has made a Visual C++ compiler for Python 2.7
available for download:

http://aka.ms/vcpython27

This has been made available specifically to ease the handling of Python
packages with C-extensions on Windows (installation and building wheels).

It is possible to compile bcolz with this compiler (Jan 2015), however,
you may need to use the following patch:

diff --git i/setup.py w/setup.py
index d77d37f233..b54bfd0fa1 100644
--- i/setup.py
+++ w/setup.py
@@ -11,8 +11,8 @@ from __future__ import absolute_import
 import sys
 import os
 import glob
-from distutils.core import Extension
-from distutils.core import setup
+from setuptools import Extension
+from setuptools import setup
 import textwrap
 import re, platform

Installing from tarball sources

Go to the bcolz main directory and do the typical distutils dance:

$ python setup.py build_ext --inplace

In case you have Blosc installed as an external library you can link
with it (disregarding the included Blosc sources) in a couple of ways:

Using an environment variable:

$ BLOSC_DIR=/usr/local (or "set BLOSC_DIR=\blosc" on Win)
$ export BLOSC_DIR (not needed on Win)
$ python setup.py build_ext --inplace

Using a flag:

$ python setup.py build_ext --inplace --blosc=/usr/local

It is always nice to run the tests before installing the package:

$ PYTHONPATH=. (or "set PYTHONPATH=." on Windows)
$ export PYTHONPATH (not needed on Windows)
$ python -c"import bcolz; bcolz.test()" # add `heavy=True` if desired

And if everything runs fine, then install it via:

$ python setup.py install

Testing the installation

You can always test the installation from any directory with:

$ python -c "import bcolz; bcolz.test()"

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bcolz 1.1.2 documentation

Tutorials

This section has been moved to ipython notebook tutorials [https://github.com/Blosc/bcolz/blob/master/docs/tutorials.ipynb].

Tutorial on carray objects

This section has been moved to ipython notebook tutorial_carray [https://github.com/Blosc/bcolz/blob/master/docs/tutorial_carray.ipynb].

Tutorial on ctable objects

This section has been moved to ipython notebook tutorial_ctable [https://github.com/Blosc/bcolz/blob/master/docs/tutorial_ctable.ipynb].

Writing bcolz extensions

Did you like bcolz but you couldn’t find exactly the functionality you were
looking for? You can write an extension and implement complex operations on
top of bcolz containers.

Before you start writing your own extension, let’s see some
examples of real projects made on top of bcolz:

	
	Bquery: a query and aggregation framework, among other things it

	provides group-by functionality for bcolz containers. See
https://github.com/visualfabriq/bquery

	
	Bdot: provides big dot products (by making your RAM bigger on the

	inside). Supports matrix . vector and matrix . matrix for
most common numpy numeric data types. See
https://github.com/tailwind/bdot

Though not a extension itself, it is worth mentioning Dask. Dask
plays nicely with bcolz and provides multi-core execution on
larger-than-memory datasets using blocked algorithms and task
scheduling. See https://github.com/dask/dask.

In addition, bcolz also interacts well with itertools, Pytoolz or
Cytoolz too and they might offer you already the amount of
performance and functionality you are after.

In the next section we will go through all the steps needed to write
your own extension on top of bcolz.

How to use bcolz as part of the infrastructure

Go to the root directory of bcolz, inside docs/my_package/ you will
find a small extension example.

Before you can run this example you will need to install the following
packages. Run pip install cython, pip install numpy and pip
install bcolz to install these packages. In case you prefer Conda
package management system execute conda install cython numpy bcolz
and you should be ready to go. See requirements.txt:

cython>=0.20
numpy>=1.7.0
bcolz>=0.8.0

Once you have those packages installed, change your working directory
to docs/my_package/, please see pkg. example [https://github.com/Blosc/bcolz/tree/master/docs/my_package] and run
python setup.py build_ext --inplace from the terminal, if
everything ran smoothly you should be able to see a binary file
my_extension/example_ext.so next to the .pyx file.

If you have any problems compiling these extensions, please make sure
you have a recent version of bcolz as old versions (pre 0.8) don’t
contain the necessary .pxd file which provides a Cython interface
to the carray Cython module.

The setup.py file is where you will need to tell the compiler, the
name of you package, the location of external libraries (in case you
want to use them), compiler directives and so on. See bcolz setup.py [https://github.com/Blosc/bcolz/blob/master/setup.py] as a possible
reference for a more complete example. Along your project grows in
complexity you might be interested in including other options to your
Extension object, e.g. include_dirs to include a list of
directories to search for C/C++ header files your code might be
dependent on.

See my_package/setup.py:

from setuptools import setup, Extension
from Cython.Distutils import build_ext
from numpy.distutils.misc_util import get_numpy_include_dirs

Sources
sources = ["my_extension/example_ext.pyx"]

setup(
 name="my_package",
 description='My description',
 license='MY_LICENSE',
 ext_modules=[
 Extension(
 "my_extension.example_ext",
 sources=sources,
),
],
 cmdclass={"build_ext": build_ext},
 packages=['my_extension'],
)

The .pyx files is going to be the place where Cython code
implementing the extension will be, in the example below the function
will return a sum of all integers inside the carray.

See my_package/my_extension/example_ext.pyx

Keep in mind that carrays are great for sequential access, but random
access will highly likely trigger decompression of a different chunk
for each randomly accessed value.

For more information about Cython visit http://docs.cython.org/index.html

import cython
import bcolz as bz
from bcolz.carray_ext cimport carray
from numpy cimport ndarray, npy_int64

@cython.overflowcheck(True)
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef my_function(carray ca):
 """
 Function for example purposes

 >>> import bcolz as bz
 >>> import my_extension.example_ext as my_mod
 >>> c = bz.carray([i for i in range(1000)], dtype='i8')
 >>> my_mod.my_function(c)
 499500

 """

 cdef:
 ndarray ca_segment
 Py_ssize_t len_ca_segment
 npy_int64 sum=0

 for ca_segment in bz.iterblocks(ca):
 len_ca_segment = len(ca_segment)
 for i in range(len_ca_segment):
 sum = sum + ca_segment[i]

 return sum

Let’s test our extension:

>>> import bcolz
>>> import my_extension.example_ext as my_mod
>>> c = bcolz.carray([i for i in range(1000)], dtype='i8')
>>> my_mod.my_function(c)
499500

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bcolz 1.1.2 documentation

Library Reference

First level variables

	
bcolz.__version__

	The version of the bcolz package.

	
bcolz.dask_here

	Whether the minimum version of dask has been detected.

	
bcolz.min_dask_version

	The minimum version of dask needed (dask is optional).

	
bcolz.min_numexpr_version

	The minimum version of numexpr needed (numexpr is optional).

	
bcolz.ncores

	The number of cores detected.

	
bcolz.numexpr_here

	Whether the minimum version of numexpr has been detected.

Top level classes

	
class bcolz.cparams(clevel=None, shuffle=None, cname=None, quantize=None)

	Class to host parameters for compression and other filters.

	Parameters:	clevel : int (0 <= clevel < 10)

The compression level.

shuffle : int

The shuffle filter to be activated. Allowed values are
bcolz.NOSHUFFLE (0), bcolz.SHUFFLE (1) and bcolz.BITSHUFFLE (2). The
default is bcolz.SHUFFLE.

cname : string (‘blosclz’, ‘lz4’, ‘lz4hc’, ‘snappy’, ‘zlib’)

Select the compressor to use inside Blosc.

quantize : int (number of significant digits)

Quantize data to improve (lossy) compression. Data is quantized using
np.around(scale*data)/scale, where scale is 2**bits, and bits is
determined from the quantize value. For example, if quantize=1, bits
will be 4. 0 means that the quantization is disabled.

In case some of the parameters are not passed, they will be

set to a default (see `setdefaults()` method).

See also

cparams.setdefaults

Attributes

	clevel
	The compression level.

	cname
	The compressor name.

	quantize
	Quantize filter.

	shuffle
	Shuffle filter.

Methods

	setdefaults([clevel,shuffle,cname,quantize])
	Change the defaults for compression params.

	
static setdefaults(clevel=None, shuffle=None, cname=None, quantize=None)

	Change the defaults for compression params.

	Parameters:	clevel : int (0 <= clevel < 10)

The compression level.

shuffle : int

The shuffle filter to be activated. Allowed values are
bcolz.NOSHUFFLE (0), bcolz.SHUFFLE (1) and bcolz.BITSHUFFLE (2).
The default is bcolz.SHUFFLE.

cname : string (‘blosclz’, ‘lz4’, ‘lz4hc’, ‘snappy’, ‘zlib’)

Select the compressor to use inside Blosc.

quantize : int (number of significant digits)

Quantize data to improve (lossy) compression. Data is quantized
using np.around(scale*data)/scale, where scale is 2**bits, and
bits is determined from the quantize value. For example, if
quantize=1, bits will be 4. 0 means that the quantization is
disabled.

If this method is not called, the defaults will be set as in

defaults.py:

(``{clevel=5, shuffle=bcolz.SHUFFLE, cname=’lz4’, quantize=None}``).

	
class bcolz.attrs.attrs(rootdir, mode, _new=False)

	Accessor for attributes in carray/ctable objects.

This class behaves very similarly to a dictionary, and attributes
can be appended in the typical way:

attrs['myattr'] = value

And can be retrieved similarly:

value = attrs['myattr']

Attributes can be removed with:

del attrs['myattr']

This class also honors the __iter__ and __len__ special
functions. Moreover, a getall() method returns all the
attributes as a dictionary.

CAVEAT: The values should be able to be serialized with JSON for
persistence.

Methods

	getall
	

Also, see the carray and ctable classes below.

Top level functions

	
bcolz.arange([start,]stop, [step,]dtype=None, **kwargs)

	Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop)
(in other words, the interval including start but excluding stop).
For integer arguments the function is equivalent to the Python built-in
range [http://docs.python.org/lib/built-in-funcs.html] function,
but returns a carray rather than a list.

	Parameters:	start : number, optional

Start of interval. The interval includes this value. The default
start value is 0.

stop : number

End of interval. The interval does not include this value.

step : number, optional

Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default
step size is 1. If step is specified, start must also be given.

dtype : dtype

The type of the output array. If dtype is not given, infer the data
type from the other input arguments.

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : carray

Bcolz object made of evenly spaced values.

For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow,
this rule may result in the last element of out being greater
than stop.

	
bcolz.eval(expression, vm=None, out_flavor=None, user_dict=None, blen=None, **kwargs)

	Evaluate an expression and return the result.

	Parameters:	expression : string

A string forming an expression, like ‘2*a+3*b’. The values for ‘a’ and
‘b’ are variable names to be taken from the calling function’s frame.
These variables may be scalars, carrays or NumPy arrays.

vm : string

The virtual machine to be used in computations. It can be ‘numexpr’,
‘python’ or ‘dask’. The default is to use ‘numexpr’ if it is
installed.

out_flavor : string

The flavor for the out object. It can be ‘bcolz’ or ‘numpy’.
If None, the value is get from bcolz.defaults.out_flavor.

user_dict : dict

An user-provided dictionary where the variables in expression
can be found by name.

blen : int

The length of the block to be evaluated in one go internally.
The default is a value that has been tested experimentally and
that offers a good enough peformance / memory usage balance.

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : bcolz or numpy object

The outcome of the expression. In case out_flavor=’bcolz’,
you can adjust the properties of this object by passing any
additional arguments supported by the carray constructor in
kwargs.

	
bcolz.fill(shape, dtype=float, dflt=None, **kwargs)

	Return a new carray or ctable object of given shape and type, filled with
dflt.

	Parameters:	shape : int

Shape of the new array, e.g., (2,3).

dflt : Python or NumPy scalar

The value to be used during the filling process. If None, values are
filled with zeros. Also, the resulting carray will have this value as
its dflt value.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : carray or ctable

Bcolz object filled with dflt values with the given shape and dtype.

See also

ones, zeros

	
bcolz.fromiter(iterable, dtype, count, **kwargs)

	Create a carray/ctable from an iterable object.

	Parameters:	iterable : iterable object

An iterable object providing data for the carray.

dtype : numpy.dtype instance

Specifies the type of the outcome object.

count : int

The number of items to read from iterable. If set to -1, means that
the iterable will be used until exhaustion (not recommended, see note
below).

kwargs : list of parameters or dictionary

Any parameter supported by the carray/ctable constructors.

	Returns:	out : a carray/ctable object

Notes

Please specify count to both improve performance and to save memory. It
allows fromiter to avoid looping the iterable twice (which is slooow).
It avoids memory leaks to happen too (which can be important for large
iterables).

	
bcolz.iterblocks(cobj, blen=None, start=0, stop=None)

	Iterate over a cobj (carray/ctable) in blocks of size blen.

	Parameters:	cobj : carray/ctable object

The bcolz object to be iterated over.

blen : int

The length of the block that is returned. The default is the
chunklen, or for a ctable, the minimum of the different column
chunklens.

start : int

Where the iterator starts. The default is to start at the beginning.

stop : int

Where the iterator stops. The default is to stop at the end.

	Returns:	out : iterable

This iterable returns data blocks as NumPy arrays of homogeneous or
structured types, depending on whether cobj is a carray or a ctable
object.

See also

whereblocks

	
bcolz.ones(shape, dtype=float, **kwargs)

	Return a new carray object of given shape and type, filled with ones.

	Parameters:	shape : int

Shape of the new array, e.g., (2,3).

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : carray or ctable

Bcolz object of ones with the given shape and dtype.

See also

fill, zeros

	
bcolz.zeros(shape, dtype=float, **kwargs)

	Return a new carray object of given shape and type, filled with zeros.

	Parameters:	shape : int

Shape of the new array, e.g., (2,3).

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : carray or ctable

Bcolz object of zeros with the given shape and dtype.

See also

fill, ones

	
bcolz.open(rootdir, mode='a')

	Open a disk-based carray/ctable.

	Parameters:	rootdir : pathname (string)

The directory hosting the carray/ctable object.

mode : the open mode (string)

Specifies the mode in which the object is opened. The supported
values are:

	‘r’ for read-only

	‘w’ for emptying the previous underlying data

	‘a’ for allowing read/write on top of existing data

	Returns:	out : a carray/ctable object or IOError (if not objects are found)

	
bcolz.walk(dir, classname=None, mode='a')

	Recursively iterate over carray/ctable objects hanging from dir.

	Parameters:	dir : string

The directory from which the listing starts.

classname : string

If specified, only object of this class are returned. The values
supported are ‘carray’ and ‘ctable’.

mode : string

The mode in which the object should be opened.

	Returns:	out : iterator

Iterator over the objects found.

Top level printing functions

	
bcolz.array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix="", style=repr, formatter=None)

	Return a string representation of a carray/ctable object.

This is the same function than in NumPy. Please refer to NumPy
documentation for more info.

	See Also:

	set_printoptions(), get_printoptions()

	
bcolz.get_printoptions()

	Return the current print options.

This is the same function than in NumPy. For more info, please
refer to the NumPy documentation.

	See Also:

	array2string(), set_printoptions()

	
bcolz.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None)

	Set printing options.

These options determine the way floating point numbers in carray
objects are displayed. This is the same function than in NumPy.
For more info, please refer to the NumPy documentation.

	See Also:

	array2string(), get_printoptions()

Utility functions

	
bcolz.set_nthreads(nthreads)

	Sets the number of threads to be used during bcolz operation.

This affects to both Blosc and Numexpr (if available). If you want to
change this number only for Blosc, use blosc_set_nthreads instead.

	Parameters:	nthreads : int

The number of threads to be used during bcolz operation.

	Returns:	out : int

The previous setting for the number of threads.

See also

blosc_set_nthreads

	
bcolz.blosc_set_nthreads(nthreads)

	Sets the number of threads that Blosc can use.

	Parameters:	nthreads : int

The desired number of threads to use.

	Returns:	out : int

The previous setting for the number of threads.

	
bcolz.detect_number_of_cores()

	Return the number of cores in this system.

	
bcolz.blosc_version()

	Return the version of the Blosc library.

	
bcolz.print_versions()

	Print all the versions of packages that bcolz relies on.

	
bcolz.test(verbose=False, heavy=False)

	Run all the tests in the test suite.

If verbose is set, the test suite will emit messages with full
verbosity (not recommended unless you are looking into a certain
problem).

If heavy is set, the test suite will be run in heavy mode (you
should be careful with this because it can take a lot of time and
resources from your computer).

The carray class

	
class bcolz.carray

	A compressed and enlargeable data container either in-memory or on-disk.

carray exposes a series of methods for dealing with the compressed
container in a NumPy-like way.

	Parameters:	array : a NumPy-like object

This is taken as the input to create the carray. It can be any Python
object that can be converted into a NumPy object. The data type of
the resulting carray will be the same as this NumPy object.

cparams : instance of the cparams class, optional

Parameters to the internal Blosc compressor.

dtype : NumPy dtype

Force this dtype for the carray (rather than the array one).

dflt : Python or NumPy scalar

The value to be used when enlarging the carray. If None,
the default is
filling with zeros.

expectedlen : int, optional

A guess on the expected length of this object. This will serve to
decide the best chunklen used for compression and memory I/O
purposes.

chunklen : int, optional

The number of items that fits into a chunk. By specifying it you can
explicitely set the chunk size used for compression and memory I/O.
Only use it if you know what are you doing.

rootdir : str, optional

The directory where all the data and metadata will be stored. If
specified, then the carray object will be disk-based (i.e. all chunks
will live on-disk, not in memory) and persistent (i.e. it can be
restored in other session, e.g. via the open() top-level function).

safe : bool (defaults to True)

Coerces inputs to array types. Set to false if you always give
correctly typed, strided, and shaped arrays and if you never use Object
dtype.

mode : str, optional

The mode that a persistent carray should be created/opened. The
values can be:

	‘r’ for read-only

	‘w’ for read/write. During carray creation, the rootdir will be
removed if it exists. During carray opening, the carray will be
resized to 0.

	‘a’ for append (possible data inside rootdir will not be
removed).

Attributes

	atomsize
	atomsize: ‘int’

	attrs
	The attribute accessor.

	cbytes
	The compressed size of this object (in bytes).

	chunklen
	The chunklen of this object (in rows).

	chunks
	chunks: object

	cparams
	The compression parameters for this object.

	dflt
	The default value of this object.

	dtype
	The dtype of this object.

	itemsize
	itemsize: ‘int’

	leftover_array
	Array containing the leftovers chunk (uncompressed chunk)

	leftover_bytes
	Number of bytes in the leftover_array

	leftover_elements
	Number of elements in the leftover_array

	leftover_ptr
	Pointer referring to the leftover_array

	len
	The length (leading dimension) of this object.

	mode
	The mode used to create/open the mode.

	nbytes
	The original (uncompressed) size of this object (in bytes).

	nchunks
	Number of chunks in the carray

	ndim
	The number of dimensions of this object.

	nleftover
	The number of leftover elements.

	partitions
	List of tuples indicating the bounds for each chunk

	rootdir
	The on-disk directory used for persistency.

	safe
	Whether or not to perform type/shape checks on every operation.

	shape
	The shape of this object.

	size
	The size of this object.

Methods

	append(self,array)
	Append a numpy array to this instance.

	copy(self,**kwargs)
	Return a copy of this object.

	flush(self)
	Flush data in internal buffers to disk.

	free_cachemem(self)
	Release in-memory cached chunk

	iter(self[,start,stop,step,limit,skip,...])
	Iterator with start, stop and step bounds.

	next
	

	purge(self)
	Remove the underlying data for on-disk arrays.

	reshape(self,newshape)
	Returns a new carray containing the same data with a new shape.

	resize(self,nitems)
	Resize the instance to have nitems.

	sum(self[,dtype])
	Return the sum of the array elements.

	trim(self,nitems)
	Remove the trailing nitems from this instance.

	view(self)
	Create a light weight view of the data in the original carray.

	where(self,boolarr[,limit,skip])
	Iterator that returns values of this object where boolarr is true.

	wheretrue(self[,limit,skip])
	Iterator that returns indices where this object is true.

	
__getitem__

	x.__getitem__(key) <==> x[key]

Returns values based on key. All the functionality of
ndarray.__getitem__() is supported (including fancy indexing),
plus a
special support for expressions:

	Parameters:	key : string

It will be interpret as a boolean expression (computed via
eval) and
the elements where these values are true will be returned as a
NumPy
array.

See also

eval

	
__setitem__

	x.__setitem__(key, value) <==> x[key] = value

Sets values based on key. All the functionality of
ndarray.__setitem__() is supported (including fancy indexing),
plus a
special support for expressions:

	Parameters:	key : string

It will be interpret as a boolean expression (computed via
eval) and
the elements where these values are true will be set to value.

See also

eval

	
append(self, array)

	Append a numpy array to this instance.

	Parameters:	array : NumPy-like object

The array to be appended. Must be compatible with shape and
type of
the carray.

	
atomsize

	atomsize: ‘int’

	
attrs

	The attribute accessor.

See also

attrs.attrs

	
cbytes

	The compressed size of this object (in bytes).

	
chunklen

	The chunklen of this object (in rows).

	
chunks

	chunks: object

	
copy(self, **kwargs)

	Return a copy of this object.

	Parameters:	kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : carray object

The copy of this object.

	
cparams

	The compression parameters for this object.

	
dflt

	The default value of this object.

	
dtype

	The dtype of this object.

	
flush(self)

	Flush data in internal buffers to disk.

This call should typically be done after performing modifications
(__settitem__(), append()) in persistence mode. If you don’t do this,
you risk losing part of your modifications.

	
free_cachemem(self)

	Release in-memory cached chunk

	
itemsize

	itemsize: ‘int’

	
iter(self, start=0, stop=None, step=1, limit=None, skip=0, _next=False)

	Iterator with start, stop and step bounds.

	Parameters:	start : int

The starting item.

stop : int

The item after which the iterator stops.

step : int

The number of items incremented during each iteration. Cannot be
negative.

limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

	Returns:	out : iterator

See also

where, wheretrue

	
leftover_array

	Array containing the leftovers chunk (uncompressed chunk)

	
leftover_bytes

	Number of bytes in the leftover_array

	
leftover_elements

	Number of elements in the leftover_array

	
leftover_ptr

	Pointer referring to the leftover_array

	
len

	The length (leading dimension) of this object.

	
mode

	The mode used to create/open the mode.

	
nbytes

	The original (uncompressed) size of this object (in bytes).

	
nchunks

	Number of chunks in the carray

	
ndim

	The number of dimensions of this object.

	
next

	

	
nleftover

	The number of leftover elements.

	
partitions

	List of tuples indicating the bounds for each chunk

	
purge(self)

	Remove the underlying data for on-disk arrays.

	
reshape(self, newshape)

	Returns a new carray containing the same data with a new shape.

	Parameters:	newshape : int or tuple of ints

The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D array of that length.
One shape dimension can be -1. In this case, the value is inferred
from the length of the array and remaining dimensions.

	Returns:	reshaped_array : carray

A copy of the original carray.

	
resize(self, nitems)

	Resize the instance to have nitems.

	Parameters:	nitems : int

The final length of the object. If nitems is larger than the
actual
length, new items will appended using self.dflt as filling
values.

	
rootdir

	The on-disk directory used for persistency.

	
safe

	Whether or not to perform type/shape checks on every operation.

	
shape

	The shape of this object.

	
size

	The size of this object.

	
sum(self, dtype=None)

	Return the sum of the array elements.

	Parameters:	dtype : NumPy dtype

The desired type of the output. If None, the dtype of
self is
used. An exception is when self has an integer type with less
precision than the default platform integer. In that case, the
default platform integer is used instead (NumPy convention).

	Returns:	out : NumPy scalar with dtype

	
trim(self, nitems)

	Remove the trailing nitems from this instance.

	Parameters:	nitems : int

The number of trailing items to be trimmed. If negative,
the object
is enlarged instead.

	
view(self)

	Create a light weight view of the data in the original carray.

	Returns:	out : carray object

The view of this object.

See also

copy

	
where(self, boolarr, limit=None, skip=0)

	Iterator that returns values of this object where boolarr is true.

This is currently only useful for boolean carrays that are unidimensional.

	Parameters:	boolarr : a carray or NumPy array of boolean type

The boolean values.

limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

	Returns:	out : iterator

See also

iter, wheretrue

	
wheretrue(self, limit=None, skip=0)

	Iterator that returns indices where this object is true.

This is currently only useful for boolean carrays that are unidimensional.

	Parameters:	limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

	Returns:	out : iterator

See also

iter, where

The ctable class

	
class bcolz.ctable.ctable(columns=None, names=None, **kwargs)

	This class represents a compressed, column-wise table.

Create a new ctable from cols with optional names.

	Parameters:	columns : tuple or list of column objects

The list of column data to build the ctable object. These are
typically carrays, but can also be a list of NumPy arrays or a pure
NumPy structured array. A list of lists or tuples is valid too, as
long as they can be converted into carray objects.

names : list of strings or string

The list of names for the columns. The names in this list must be
valid Python identifiers, must not start with an underscore, and has
to be specified in the same order as the cols. If not passed, the
names will be chosen as ‘f0’ for the first column, ‘f1’ for the second
and so on so forth (NumPy convention).

kwargs : list of parameters or dictionary

Allows to pass additional arguments supported by carray
constructors in case new carrays need to be built.

Notes

Columns passed as carrays are not be copied, so their settings
will stay the same, even if you pass additional arguments (cparams,
chunklen...).

Attributes

	cbytes
	The compressed size of this object (in bytes).

	cparams
	The compression parameters for this object.

	dtype
	The data type of this object (numpy dtype).

	names
	The column names of the object (list).

	nbytes
	The original (uncompressed) size of this object (in bytes).

	ndim
	The number of dimensions of this object.

	shape
	The shape of this object.

	size
	The size of this object.

Methods

	addcol(newcol[,name,pos,move])
	Add a new newcol object as column.

	append(cols)
	Append cols to this ctable.

	copy(**kwargs)
	Return a copy of this ctable.

	delcol([name,pos,keep])
	Remove the column named name or in position pos.

	eval(expression,**kwargs)
	Evaluate the expression on columns and return the result.

	fetchwhere(expression[,outcols,limit,...])
	Fetch the rows fulfilling the expression condition.

	flush()
	Flush data in internal buffers to disk.

	free_cachemem()
	Get rid of internal caches to free memory.

	fromdataframe(df,**kwargs)
	Return a ctable object out of a pandas dataframe.

	fromhdf5(filepath[,nodepath])
	Return a ctable object out of a compound HDF5 dataset (PyTables Table).

	iter([start,stop,step,outcols,limit,...])
	Iterator with start, stop and step bounds.

	resize(nitems)
	Resize the instance to have nitems.

	todataframe([columns,orient])
	Return a pandas dataframe out of this object.

	tohdf5(filepath[,nodepath,mode,cparams,...])
	Write this object into an HDF5 file.

	trim(nitems)
	Remove the trailing nitems from this instance.

	where(expression[,outcols,limit,skip,...])
	Iterate over rows where expression is true.

	whereblocks(expression[,blen,outcols,...])
	Iterate over the rows that fullfill the expression condition on this ctable, in blocks of size blen.

	
addcol(newcol, name=None, pos=None, move=False, **kwargs)

	Add a new newcol object as column.

	Parameters:	newcol : carray, ndarray, list or tuple

If a carray is passed, no conversion will be carried out.
If conversion to a carray has to be done, kwargs will
apply.

name : string, optional

The name for the new column. If not passed, it will
receive an automatic name.

pos : int, optional

The column position. If not passed, it will be appended
at the end.

move: boolean, optional

If the new column is an existing, disk-based carray should it
a) copy the data directory (False) or
b) move the data directory (True)

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

See also

delcol

Notes

You should not specificy both name and pos arguments,
unless they are compatible.

	
append(cols)

	Append cols to this ctable.

	Parameters:	cols : list/tuple of scalar values, NumPy arrays or carrays

It also can be a NumPy record, a NumPy recarray, or
another ctable.

	
cbytes

	The compressed size of this object (in bytes).

	
cols = None

	The ctable columns accessor.

	
copy(**kwargs)

	Return a copy of this ctable.

	Parameters:	kwargs : list of parameters or dictionary

Any parameter supported by the carray/ctable constructor.

	Returns:	out : ctable object

The copy of this ctable.

	
cparams

	The compression parameters for this object.

	
delcol(name=None, pos=None, keep=False)

	Remove the column named name or in position pos.

	Parameters:	name: string, optional

The name of the column to remove.

pos: int, optional

The position of the column to remove.

keep: boolean

For disk-backed columns: keep the data on disk?

See also

addcol

Notes

You must specify at least a name or a pos. You should not
specify both name and pos arguments, unless they are
compatible.

	
dtype

	The data type of this object (numpy dtype).

	
eval(expression, **kwargs)

	Evaluate the expression on columns and return the result.

	Parameters:	expression : string

A string forming an expression, like ‘2*a+3*b’. The values
for ‘a’ and ‘b’ are variable names to be taken from the
calling function’s frame. These variables may be column
names in this table, scalars, carrays or NumPy arrays.

kwargs : list of parameters or dictionary

Any parameter supported by the eval() top level function.

	Returns:	out : bcolz object

The outcome of the expression. You can tailor the
properties of this object by passing additional arguments
supported by the carray constructor in kwargs.

See also

eval

	
fetchwhere(expression, outcols=None, limit=None, skip=0, out_flavor=None, user_dict={}, vm=None, **kwargs)

	Fetch the rows fulfilling the expression condition.

	Parameters:	expression : string or carray

A boolean Numexpr expression or a boolean carray.

outcols : list of strings or string

The list of column names that you want to get back in results.
Alternatively, it can be specified as a string such as ‘f0 f1’ or
‘f0, f1’. If None, all the columns are returned. If the special
name ‘nrow__‘ is present, the number of row will be included in
output.

limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

out_flavor : string

The flavor for the out object. It can be ‘bcolz’ or ‘numpy’.
If None, the value is get from bcolz.defaults.out_flavor.

user_dict : dict

An user-provided dictionary where the variables in expression
can be found by name.

vm : string

The virtual machine to be used in computations. It can be
‘numexpr’, ‘python’ or ‘dask’. The default is to use ‘numexpr’ if
it is installed.

kwargs : list of parameters or dictionary

Any parameter supported by the carray constructor.

	Returns:	out : bcolz or numpy object

The outcome of the expression. In case out_flavor=’bcolz’, you
can adjust the properties of this object by passing any additional
arguments supported by the carray constructor in kwargs.

See also

whereblocks

	
flush()

	Flush data in internal buffers to disk.

This call should typically be done after performing modifications
(__settitem__(), append()) in persistence mode. If you don’t do this,
you risk losing part of your modifications.

	
free_cachemem()

	Get rid of internal caches to free memory.

This call can typically be made after reading from a
carray/ctable so as to free the memory used internally to
cache data blocks/chunks.

	
static fromdataframe(df, **kwargs)

	Return a ctable object out of a pandas dataframe.

	Parameters:	df : DataFrame

A pandas dataframe.

kwargs : list of parameters or dictionary

Any parameter supported by the ctable constructor.

	Returns:	out : ctable object

A ctable filled with values from df.

See also

ctable.todataframe

Notes

The ‘object’ dtype will be converted into a ‘S’tring type, if possible.
This allows for much better storage savings in bcolz.

	
static fromhdf5(filepath, nodepath='/ctable', **kwargs)

	Return a ctable object out of a compound HDF5 dataset (PyTables Table).

	Parameters:	filepath : string

The path of the HDF5 file.

nodepath : string

The path of the node inside the HDF5 file.

kwargs : list of parameters or dictionary

Any parameter supported by the ctable constructor.

	Returns:	out : ctable object

A ctable filled with values from the HDF5 node.

See also

ctable.tohdf5

	
iter(start=0, stop=None, step=1, outcols=None, limit=None, skip=0, out_flavor=<function namedtuple>)

	Iterator with start, stop and step bounds.

	Parameters:	start : int

The starting item.

stop : int

The item after which the iterator stops.

step : int

The number of items incremented during each iteration. Cannot be
negative.

outcols : list of strings or string

The list of column names that you want to get back in results.
Alternatively, it can be specified as a string such as ‘f0 f1’ or
‘f0, f1’. If None, all the columns are returned. If the special
name ‘nrow__‘ is present, the number of row will be included in
output.

limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

out_flavor : namedtuple, tuple or ndarray

Whether the returned rows are namedtuples or tuples. Default are
named tuples.

	Returns:	out : iterable

See also

where

	
names

	The column names of the object (list).

	
nbytes

	The original (uncompressed) size of this object (in bytes).

	
ndim

	The number of dimensions of this object.

	
resize(nitems)

	Resize the instance to have nitems.

	Parameters:	nitems : int

The final length of the instance. If nitems is larger than the
actual length, new items will appended using self.dflt as
filling values.

	
shape

	The shape of this object.

	
size

	The size of this object.

	
todataframe(columns=None, orient='columns')

	Return a pandas dataframe out of this object.

	Parameters:	columns : sequence of column labels, optional

Must be passed if orient=’index’.

orient : {‘columns’, ‘index’}, default ‘columns’

The “orientation” of the data. If the keys of the input correspond
to column labels, pass ‘columns’ (default). Otherwise if the keys
correspond to the index, pass ‘index’.

	Returns:	out : DataFrame

A pandas DataFrame filled with values from this object.

See also

ctable.fromdataframe

	
tohdf5(filepath, nodepath='/ctable', mode='w', cparams=None, cname=None)

	Write this object into an HDF5 file.

	Parameters:	filepath : string

The path of the HDF5 file.

nodepath : string

The path of the node inside the HDF5 file.

mode : string

The mode to open the PyTables file. Default is ‘w’rite mode.

cparams : cparams object

The compression parameters. The defaults are the same than for
the current bcolz environment.

cname : string

Any of the compressors supported by PyTables (e.g. ‘zlib’). The
default is to use ‘blosc’ as meta-compressor in combination with
one of its compressors (see cparams parameter above).

See also

ctable.fromhdf5

	
trim(nitems)

	Remove the trailing nitems from this instance.

	Parameters:	nitems : int

The number of trailing items to be trimmed.

	
where(expression, outcols=None, limit=None, skip=0, out_flavor=<function namedtuple>, user_dict={}, vm=None)

	Iterate over rows where expression is true.

	Parameters:	expression : string or carray

A boolean Numexpr expression or a boolean carray.

outcols : list of strings or string

The list of column names that you want to get back in results.
Alternatively, it can be specified as a string such as ‘f0 f1’ or
‘f0, f1’. If None, all the columns are returned. If the special
name ‘nrow__‘ is present, the number of row will be included in
output.

limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

out_flavor : namedtuple, tuple or ndarray

Whether the returned rows are namedtuples or tuples. Default are
named tuples.

user_dict : dict

An user-provided dictionary where the variables in expression
can be found by name.

vm : string

The virtual machine to be used in computations. It can be
‘numexpr’, ‘python’ or ‘dask’. The default is to use ‘numexpr’ if
it is installed.

	Returns:	out : iterable

See also

iter

	
whereblocks(expression, blen=None, outcols=None, limit=None, skip=0, user_dict={}, vm=None)

	Iterate over the rows that fullfill the expression condition on
this ctable, in blocks of size blen.

	Parameters:	expression : string or carray

A boolean Numexpr expression or a boolean carray.

blen : int

The length of the block that is returned. The default is the
chunklen, or for a ctable, the minimum of the different column
chunklens.

outcols : list of strings or string

The list of column names that you want to get back in results.
Alternatively, it can be specified as a string such as ‘f0 f1’ or
‘f0, f1’. If None, all the columns are returned. If the special
name ‘nrow__‘ is present, the number of row will be included in
output.

limit : int

A maximum number of elements to return. The default is return
everything.

skip : int

An initial number of elements to skip. The default is 0.

user_dict : dict

An user-provided dictionary where the variables in expression
can be found by name.

vm : string

The virtual machine to be used in computations. It can be
‘numexpr’, ‘python’ or ‘dask’. The default is to use ‘numexpr’ if
it is installed.

	Returns:	out : iterable

The iterable returns numpy objects of blen length.

See also

	See

	py:func:<bcolz.toplevel.iterblocks> in toplevel functions.

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bcolz 1.1.2 documentation

Optimization tips

Changing explicitly the length of chunks

You may want to use explicitly the chunklen parameter to fine-tune
your compression levels:

>>> a = np.arange(1e7)
>>> bcolz.carray(a)
carray((10000000,), float64) nbytes: 76.29 MB; cbytes: 2.57 MB; ratio: 29.72
 cparams := cparams(clevel=5, shuffle=1)
[0.0, 1.0, 2.0, ..., 9999997.0, 9999998.0, 9999999.0]
>>> bcolz.carray(a).chunklen
16384 # 128 KB = 16384 * 8 is the default chunk size for this carray
>>> bcolz.carray(a, chunklen=512)
carray((10000000,), float64) nbytes: 76.29 MB; cbytes: 10.20 MB; ratio: 7.48
 cparams := cparams(clevel=5, shuffle=1)
[0.0, 1.0, 2.0, ..., 9999997.0, 9999998.0, 9999999.0]
>>> bcolz.carray(a, chunklen=8*1024)
carray((10000000,), float64) nbytes: 76.29 MB; cbytes: 1.50 MB; ratio: 50.88
 cparams := cparams(clevel=5, shuffle=1)
[0.0, 1.0, 2.0, ..., 9999997.0, 9999998.0, 9999999.0]

You see, the length of the chunk affects very much compression levels
and the performance of I/O to carrays too.

In general, however, it is safer (and quicker!) to use the
expectedlen parameter (see next section).

Informing about the length of your carrays

If you are going to add a lot of rows to your carrays, be sure to use
the expectedlen parameter in creating time to inform the constructor
about the expected length of your final carray; this allows bcolz to
fine-tune the length of its chunks more easily. For example:

>>> a = np.arange(1e7)
>>> bcolz.carray(a, expectedlen=10).chunklen
512
>>> bcolz.carray(a, expectedlen=10*1000).chunklen
4096
>>> bcolz.carray(a, expectedlen=10*1000*1000).chunklen
16384
>>> bcolz.carray(a, expectedlen=10*1000*1000*1000).chunklen
131072

Lossy compression via the quantize filter

Using the quantize filter for allowing lossy compression on floating
point data. Data is quantized using np.around(scale*data)/scale,
where scale is 2**bits, and bits is determined from the quantize
value. For example, if quantize=1, bits will be 4. 0 means that the
quantization is disabled.

Here it is an example of what you can get from the quantize filter:

In [9]: a = np.cumsum(np.random.random_sample(1000*1000)-0.5)

In [10]: bcolz.carray(a, cparams=bcolz.cparams(quantize=0)) # no quantize
Out[10]:
carray((1000000,), float64)
 nbytes: 7.63 MB; cbytes: 6.05 MB; ratio: 1.26
 cparams := cparams(clevel=5, shuffle=1, cname='blosclz', quantize=0)
[-2.80946077e-01 -7.63925274e-01 -5.65575047e-01 ..., 3.59036158e+02
 3.58546624e+02 3.58258860e+02]

In [11]: bcolz.carray(a, cparams=bcolz.cparams(quantize=1))
Out[11]:
carray((1000000,), float64)
 nbytes: 7.63 MB; cbytes: 1.41 MB; ratio: 5.40
 cparams := cparams(clevel=5, shuffle=1, cname='blosclz', quantize=1)
[-2.50000000e-01 -7.50000000e-01 -5.62500000e-01 ..., 3.59036158e+02
 3.58546624e+02 3.58258860e+02]

In [12]: bcolz.carray(a, cparams=bcolz.cparams(quantize=2))
Out[12]:
carray((1000000,), float64)
 nbytes: 7.63 MB; cbytes: 2.20 MB; ratio: 3.47
 cparams := cparams(clevel=5, shuffle=1, cname='blosclz', quantize=2)
[-2.81250000e-01 -7.65625000e-01 -5.62500000e-01 ..., 3.59036158e+02
 3.58546624e+02 3.58258860e+02]

In [13]: bcolz.carray(a, cparams=bcolz.cparams(quantize=3))
Out[13]:
carray((1000000,), float64)
 nbytes: 7.63 MB; cbytes: 2.30 MB; ratio: 3.31
 cparams := cparams(clevel=5, shuffle=1, cname='blosclz', quantize=3)
[-2.81250000e-01 -7.63671875e-01 -5.65429688e-01 ..., 3.59036158e+02
 3.58546624e+02 3.58258860e+02]

As you can see, the compression ratio can improve pretty significantly
when using the quantize filter. It is important to note that by using
quantize you are loosing precision on your floating point data.

Also note how the first elements in the quantized arrays have less
significant digits, but not the last ones. This is a side effect due
to how bcolz stores the trainling data that do not fit in a whole
chunk. But in general you should expect a loss in precision.

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	bcolz 1.1.2 documentation

Defaults for bcolz operation

You can tailor the behaviour of bcolz by changing the values of
certain some special top level variables whose defaults are listed
here. You can change these values in two ways:

	In your program: the changes will be temporary. For example:

bcolz.defaults.out_flavor = "numpy"

	Manually modify the defaults.py module of the bcolz package: the
changes will be persistent. For example, replace:

defaults.out_flavor = "bcolz"

by:

defaults.out_flavor = "numpy"

Generally, only the former is needed.

Defaults in contexts

bcolz allows to set short-lived defaults in contexts. For example:

with bcolz.defaults_ctx(vm="python", cparams=bcolz.cparams(clevel=0)):
 cout = bcolz.eval("(x + 1) < 0")

means that the bcolz.eval operation will be made using a “python”
virtual machine and no compression for the cout output.

List of default values

	
out_flavor

	The flavor for the output object in eval() and others
that call this indirectly. It can be ‘bcolz’ or ‘numpy’. Default
is ‘bcolz’.

	
vm

	The virtual machine to be used in computations (via
eval()). It can be ‘python’, ‘numexpr’ or ‘dask’.
Default is ‘numexpr’, if installed. If not, ‘dask’ is used, if
installed. And if neither of these are installed, then the
‘python’ interpreter is used (via numpy).

	
cparams

	The defaults for parameters used in compression (dict). The
default is {‘clevel’: 5, ‘shuffle’: True, ‘cname’: ‘lz4’,
quantize: 0}.

	See Also:

	cparams.setdefaults()

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	bcolz 1.1.2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Z

_

 	

 	__getitem__ (bcolz.carray attribute)

 	__setitem__ (bcolz.carray attribute)

 	

 	__version__ (in module bcolz)

A

 	

 	addcol() (bcolz.ctable.ctable method)

 	append() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	arange() (in module bcolz)

 	

 	array2string() (in module bcolz)

 	atomsize (bcolz.carray attribute)

 	attrs (bcolz.carray attribute)

 	

 	(class in bcolz.attrs)

B

 	

 	blosc_set_nthreads() (in module bcolz)

 	

 	blosc_version() (in module bcolz)

C

 	

 	carray (class in bcolz)

 	cbytes (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

 	chunklen (bcolz.carray attribute)

 	chunks (bcolz.carray attribute)

 	

 	cols (bcolz.ctable.ctable attribute)

 	copy() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	cparams (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

 	(class in bcolz)

 	ctable (class in bcolz.ctable)

D

 	

 	dask_here (in module bcolz)

 	delcol() (bcolz.ctable.ctable method)

 	detect_number_of_cores() (in module bcolz)

 	

 	dflt (bcolz.carray attribute)

 	dtype (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

E

 	

 	eval() (bcolz.ctable.ctable method)

 	

 	(in module bcolz)

F

 	

 	fetchwhere() (bcolz.ctable.ctable method)

 	fill() (in module bcolz)

 	flush() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	free_cachemem() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	

 	fromdataframe() (bcolz.ctable.ctable static method)

 	fromhdf5() (bcolz.ctable.ctable static method)

 	fromiter() (in module bcolz)

G

 	

 	get_printoptions() (in module bcolz)

I

 	

 	itemsize (bcolz.carray attribute)

 	iter() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	

 	iterblocks() (in module bcolz)

L

 	

 	leftover_array (bcolz.carray attribute)

 	leftover_bytes (bcolz.carray attribute)

 	leftover_elements (bcolz.carray attribute)

 	

 	leftover_ptr (bcolz.carray attribute)

 	len (bcolz.carray attribute)

M

 	

 	min_dask_version (in module bcolz)

 	min_numexpr_version (in module bcolz)

 	

 	mode (bcolz.carray attribute)

N

 	

 	names (bcolz.ctable.ctable attribute)

 	nbytes (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

 	nchunks (bcolz.carray attribute)

 	ncores (in module bcolz)

 	

 	ndim (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

 	next (bcolz.carray attribute)

 	nleftover (bcolz.carray attribute)

 	numexpr_here (in module bcolz)

O

 	

 	ones() (in module bcolz)

 	open() (in module bcolz)

 	

 	out_flavor

P

 	

 	partitions (bcolz.carray attribute)

 	print_versions() (in module bcolz)

 	

 	purge() (bcolz.carray method)

R

 	

 	reshape() (bcolz.carray method)

 	resize() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	

 	rootdir (bcolz.carray attribute)

S

 	

 	safe (bcolz.carray attribute)

 	set_nthreads() (in module bcolz)

 	set_printoptions() (in module bcolz)

 	setdefaults() (bcolz.cparams static method)

 	

 	shape (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

 	size (bcolz.carray attribute)

 	

 	(bcolz.ctable.ctable attribute)

 	sum() (bcolz.carray method)

T

 	

 	test() (in module bcolz)

 	todataframe() (bcolz.ctable.ctable method)

 	

 	tohdf5() (bcolz.ctable.ctable method)

 	trim() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

V

 	

 	view() (bcolz.carray method)

 	

 	vm

W

 	

 	walk() (in module bcolz)

 	where() (bcolz.carray method)

 	

 	(bcolz.ctable.ctable method)

 	

 	whereblocks() (bcolz.ctable.ctable method)

 	wheretrue() (bcolz.carray method)

Z

 	

 	zeros() (in module bcolz)

 Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

search.html

 Navigation

 		
 index

 		bcolz 1.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

my_package/README.html

 Navigation

 		
 index

 		bcolz 1.1.2 documentation »

Bcolz extension basic example

Install needed packages:

$ pip install cython
$ pip install numpy
$ pip install bcolz

Build me

Build the Bcolz Cython extension:

$ python setup.py build_ext --inplace

Test me

Start your python session:

>>> import bcolz as bz
>>> import my_extension.example_ext as my_mod
>>> c = bz.carray([i for i in range(1000)], dtype='i8')
>>> my_mod.my_function(c)
499500

 © Copyright 2010-2017 Francesc Alted and the bcolz contributors.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

